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ABSTRACT-The application of a hierarchical mizture of experts architecture
to martian entry navigation during the highly dynamic hypersonic pre-parachute
deploy phase is investigated. The entry navigation filter design is approached in
a nontraditional way by processing accelerometer and gyro data in an extended
Kalman filter as if they were external measurements. A dynamics model suitable
for use in an extended Kalman filter processing accelerometer measurements is
developed.
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INTRODUCTION

On-going investigations are aimed at developing precision navigation and orbit determina-
tion techniques capable of adaptive and autonomous operations for highly accurate nav-
igation and event detection during interplanetary cruise, planetary approach, and in-situ
planetary operations to support planetary exploration missions. The focus of recent efforts
has been on the interplanetary cruise phase using an autonomous monitoring component
based on a hierarchical mixture-of-experts (HME) algorithm for model identification [1]-[5].
The success of this project leads naturally to the idea that a modified HME approach might
be applicable to planetary entry wherein active guidance requires accurate and robust pre-
cision navigation. Generally, during the upper atmospheric hypersonic entry phase, the
only observations available are provided internally by a strapdown inertial measurement
unit (IMU). Physical and dynamical constraints usually prevent access to external mea-
surements, such as altimeters. In this paper, we examine the utility of the HME during
the highly dynamic hypersonic pre-parachute deploy entry phase when only IMU data are
available.

Typically a navigation system utilizing a recursive algorithm (such as an extended
Kalman filter) has two main components: a state propagation component and a state
update component. Both the state propagation and state update are environment and
measurement model-dependent. Conventional wisdom suggests that the navigation system
should utilize IMU data (when available) to aid the navigation system during the state



propagation phase, thereby eliminating the need for modeling the non-gravitational dy-
namics. All the accelerations acting on the spacecraft, modulo gravity, are assumed to be
accurately measured via the IMU, and external measurements (such as altimetry) are used
to update the state when available. The beauty of IMU-aided inertial navigation is that
it negates the requirement for an accurate entry dynamics model. Yet, many questions re-
main. Can conventional IMU-aided inertial navigation be used to realize precision landing
in the highly uncertain entry environment at Mars? Is it a robust approach able to deal
effectively with IMU data gaps?

When there are no external measurements available, the IMU-aided inertial navigation
process reduces to what is known as dead-reckoning navigation. During dead-reckoning
there is no state update in the navigation system since there are no external measurements.
It is possible to include stochastic models of the expected measurement errors in the IMU as
part of the estimation state vector, thereby including the effects of measurement uncertainty
in the filter estimation error covariance, hence improving the knowledge of the accuracy of
the state estimate. Nevertheless, dead-reckoning navigation is open-loop, hence error growth
is expected without bound.

From a navigation system perspective, the difficulty in achieving precision landing on
Mars stems from the fact that in the upper atmosphere, where there is sufficient time and
available lift to actively guide out any delivery and initial state knowledge errors, there are
no external measurements available for navigation, hence the guidance must depend only
on IMU dead-reckoning. Once the heat shield is jettisoned and the altimeter, now exposed
to the external environment, provides measurements to the navigation filter (assisted by the
IMU), the spacecraft is on the parachute and cannot be actively guided using lift modula-
tion. During this phase of entry, descent, and landing (EDL), the navigation uncertainty is
significantly reduced, but guidance cannot compensate for any existing state errors. In the
final phase of EDL, the parachutes are jettisoned and the altimeter and LIDAR (or other
hazard avoidance sensor) are available. Guidance can now actively be utilized to maneuver
the vehicle, however, there is not sufficient time to make large excursions to hit a pinpoint
landing. The challenge is, working within the constraints of nonavailability of sensors, to
provide the most accurate navigated state and on-board computation of the uncertainty in
that estimated state. In some sense, it becomes a race to reach parachute deploy conditions
before the navigation state error uncertainty renders the state estimate essentially useless
to guidance.

In this paper, we present a solution to the entry navigation problem that utilizes IMU
data in a nontraditional way. The question that we pose is this: Is it desirable to utilize
IMU measurements in a recursive filter to update the state estimate, and then employ a
spacecraft entry model to propagate the state between available IMU measurements? The
inclusion of other external measurements would not be prohibited, but indeed they could
be readily incorporated in the filtering process whenever available. This work is done with
an eye towards implementation of a HME filter bank in which the filters are parameterized
with various atmospheric and other spacecraft parameters.

We begin to answer the following questions: During the pre-parachute deploy entry
phase utilizing IMU data only, can the HME improve trajectory knowledge during EDL in
the presence of highly uncertain atmospheric models? Can the HME improve atmosphere
modeling via its inherent model identification capabilities? To address these questions, we
first develop a dynamics model suitable for use in an extended Kalman filter processing IMU
accelerometer measurements. The development is motivated by the desire to construct a
model that can accurately represent the motion of an entry spacecraft with enough sophisti-



cation to capture the essential elements of the dynamics, yet be amenable to application to
optimal recursive filtering, i.e., sufficient analytic differentiability. We confirm that under
ideal conditions, the proposed model can accurately duplicate an actual entry trajectory.
By ideal conditions, we mean that the initial state is precisely known, all aerodynamic co-
efficients and associated parameters are known, and the bank angle is known. Since we do
not have access to any actual entry trajectory data, we rely instead on high-fidelity “truth”
simulation results generated by NASA Langley Research Center using the POST simulator!
and the NASA Johnson Space Center “truth” simulation results generated by the SORT
simulator?.

Notations The convention adopted here is for vectors and matrices to be boldface and
scalars to be talic type. For example, the magnitude of the vector r is denoted by r. The
vector inner (dot) product is denoted by ® and the outer (cross) product by *. The stan-
dard Euclidean norm of a vector is denoted by || e .

REFERENCE FRAMES
In this section, the various references frames are defined. A more thorough review of the

reference frames will be required as the system design matures to determine optimum ref-
erence systems for the various subsystems.

Planet-Centered Reference Frame: The planet-centered inertial frame is depicted in
Figure 1, where €} lies along the planet spin axis, and e} and e} lie in the equatorial plane
and form a right-handed coordinate system.

Zz

0 = Qt+6,

Figure 1: Planet-centered inertial and planet-centered rotating reference frames.

! Contact Scott Striepe at S.A.Striepe@larc.nasa.gov for information on POST
2Contact Tim Crain at tim.crain1@jsc.nasa.gov for information on SORT



We assume the planet is rotating at a constant rate, denoted by £, that is

0
Q=10
Q

As illustrated in Figure 1, the planet-centered rotating frame unit vector ey’ is aligned
with the planet-centered inertial frame unit vector €}. The planet-centered rotating frame
rotates relative to the planet-centered inertial frame at & constant rate, (2 := (|2, through
the angle 6 = Q¢ + 6,.

Wind Frame: The wind frame, defined with respect to the atmosphere, is depicted in
Figure 2. The spacecraft velocity relative to the atmosphere is given by

Vrelzf‘—-ﬂ*r,

where r is the position of the entry vehicle in the planet-centered inertia] frame. The unit
vector eY’ is defined as

v,
e?[l) — rel , (1)
Urel
where v,.¢; is the velocity of the entry vehicle relative to the local atmosphere in the planet-
centered inertial frame, v,.,; := ([Vrerll, and the superscript “w” denotes the wind reference

frame. Since the vectors e¥ and e¥ only need to span the “lift space.” we can use the
2 3 P p 3

Paralle! to local horizontal plane

Figure 2: Wind and IMU case reference frames with lift /drag/bank angle definitions.

definitions
el xr

= —m and e3w = ei” * 8121} . (2)



This means that e} is defined with respect to the local horizontal. Also, the transformation
from the wind frame to the inertial frame is given by

Liw=[ev ' e¥ ! e¥]-

The bank angle, denoted by ¢ and shown in Figure 2, is the main guidance variable. It is a
rotation about the relative velocity vector, e’. When ¢ = 0, we have a “lift-up” condition.
Similarly, when ¢ = +180°, we have a “lift-down” condition.

IMU Case Frame: The IMU case frame is attached to the IMU unit, as depicted in
Figure 2. The accelerometer package measures nongravitational accelerations in the IMU
case frame, denoted by af,. Dead-reckoning navigation requires that the IMU-measured
accelerations be transformed to the inertial frame for numerical integration. The transfor-
mation matrix is a function of the spacecraft attitude, which we choose to represent via the
classical Euler quaternion Q € R?, where

R | 4
Q.—[(M}ER,

and q = [g1 ¢ qg]T subject to the constraint that q7q+ g2 = 1. In terms of the quaternion
components, the transformation matrix from the IMU case frame to the inertial frame is
given by
1-23+q) 2(q12 +a3s) 2(q103 — 42q4)
Tic=| 2(q1q2 — q3q4) 1—2(qi +q3) 2(qoqs + q194) |- (3)
2(q1q3 + 9294)  2(q293 — q1qs) 1 —2(¢ +¢3)

For purposes of computing the spacecraft attitude, the IMU unit contains a gyro package
that provides measurements of the relative angular velocity of the IMU case reference frame
relative to the inertial reference frame, denoted by w,,. The measured angular velocity ve-
locity vector is integrated to obtain the attitude, represented by Q. Nominally, the IMU
unit will be installed in the spacecraft at a position offset from the spacecraft center of
mass. This position is not known perfectly, and will indeed vary as the spacecraft expends
fuel for attitude control purposes. A potentially significant step change in the offset of the
IMU from the center of mass is expected when the heat shield separates. If the IMU offset
is not properly accounted for, attitude motion will inadvertently be measured as translated
acceleration. The offset of the IMU from the spacecraft center of mass is not considered here.

DEAD RECKONING NAVIGATION
The system dynamics in the inertially-fixed frame are given in the general form

r = v
v = g(r)+Tic(Q)a’ (4)
Q = ;B@Q

with the initial conditions
r(tO) = ro, V(to) = Vo, Q(to) = QO’

where g(r) is the acceleration due to gravity, a® is the true nongravitational acceleration
represented in the IMU case frame, Tj¢ is the transformation matrix from the IMU case



frame to the inertial frame, and w = |w; wy wz]T is the relative angular velocity vector
of the IMU case frame with respect to the inertial frame. The matrix B(w) in Eq. (4) is
defined to be
0 w, —wy wg
] —ws 0 wr wy
B(w) := I 0w | (5)
~Wy —wy —w, 0

Alternatively, we can represent the quaternion dynamics via

. 1
Q= §A(Q)w (6)
where
g4 q3 q2
q3 qga —q1
A = . 7
@ —q2 a1 q4 @
—q1 —q2 —q3

Suppose that af,(t) and wn,(t) are available from the IMU. Then, dead reckoning navi-
gation is the process of integrating over the interval [to, ¢] the following equations:

t v

Vo= g() + Tre(Qs,

Q = BwnQ ®)
©)

A T
where g(t') is the modeled gravity, Q = [élT | (24] =[¢1 G2 g3 @dT is the estimated quater-
nion, B(wm,) is the matrix defined in Eq. (5) evaluated using the measured w,,, and T re(Q)
is the matrix in Eq. (3) evaluated using the estimated quaternion. The initial conditions
are denoted by . .

B(to) = Fo, V¥(to) = Vo, Q(to) = Qu,
and must be available apriori as a result of approach tracking (for #(¢p) and V(tp)) and
from the IMU alignment (for Q(to)).

SENSOR ERROR MODELS

The accelerometers and gyros produce measurements corrupted by random errors {(noise
and biases), systematic biases, and other errors. The effectiveness of the navigation system
(esp. dead-reckoning navigation) depends on the magnitude of the IMU errors and on the
accuracy of the initial spacecraft state knowledge.

Accelerometers

The measurement of the nongravitational accelerations is corrupted by errors due to nonorthog-
onality and misalignment of the axes, errors due to scale factor uncertainties, random biases,
and noise. The strapdown accelerometer error model can be formulated as

ag, = (I+ Yo )(I+Eq)(a® + ba + €4), (10)



where

0 Vag: Vagy, &, O 0 ba,
Y, = —Va,, 0 Vay, , B, = 0 &, 0 |, by = | bs, |,
Vasy Vaoo 0 0 0 &, b,

and (Vay, , Va,ys Vase s Vags s Vagys Vay, ) are nonorthogonality and axes misalignment errors, b
is the bias in the accelerometer, (&4, ,%a,,&q.) are scale factor errors, and €, is a white noise
stochastic process. The nonorthogonality and axes misalignment errors, scale factor errors,
and bias parameters are all modeled as zero-mean, Gaussian-distributed random constants
with appropriate covariances. The noise €, is modeled as a zero-mean, Gaussian-distributed,
time-wise uncorrelated random process, with

E(ea(t)es (7)) = Va()8(t — 1),

where §(t) is the Dirac delta function. If we assume that the various errors are “small,”
then to first-order we have

al, = (I+ Y.+ E5)(@+ b, + €). (11)

Gyros

The measurement of the angular velocity vector is corrupted by random biases, errors due
to scale factor uncertainties, errors due to nonorthogonality and axes misalignments, and
random noise. The gyro error model can be formulated as

wm = (I+8)(I+Ty)(w+by+e¢), (12)
where
ng 0 0 ’ygzz _79111
S!] = 0 Sgy 0 ) PQ = Yoy 0 Yoy ’ (13)
O O ng 'Ygzy —_7gza: 0

and (Yg,.» Y92y > Yazz» Vgzs> Yauy» Yaye) aT€ nODOTthogonality and axes misalignment errors, by
is the bias in the gyro, (S, ,Sg,, S, ) are scale factor errors, and €4 is a white noise stochas-
tic process. The nonorthogonality and axes misalignment errors, scale factor errors, and
bias parameters are all modeled as zero-mean, Gaussian-distributed random constants with
appropriate covariances. The noise €, is modeled as a zero-mean, Gaussian-distributed,
time-wise uncorrelated random process, with

E(eg(t)eg (1)) = Vo(t)8(t — 7).
If we assume that the various errors are “small,” then to first-order we have
wm = (I+ 84 + Tg)(w + by + €), (14)

The specific error parameter values depend on the choice of IMU for a particular mission.
This paper describes a work-in-progress, and as such, specific key parameter values have
not been selected for the analysis. In fact, the results presented herein are for IMU units
providing acceleration corrupted by random noise only, that is, €, in Eq. (11) and ¢, in
Eq. (14). The angular orientation of the spacecraft is assumed known perfectly. Future



work will consider the contributions of the biases and misalignments.

FILTER MODEL DEVELOPMENT
The sum of the accelerations acting on the entry vehicle is

t=a+g, (15)

where a are the aerodynamic accelerations (a = L + D) and g is the gravitational acceler-
ation. We assume that the reentry vehicle is not thrusting. Taking the time derivative of
Eq. (15) yields

r=a+g. (16)
The time derivative of the gravity term depends on the gravity model employed. For
example, if we utilize a central gravity model, then computing the time derivative yields

- Y e .
g-—{ar]r— T3r+3rs(r®r)r. (17)

Depending on the implementation of the filter, choosing the third state to be a rather than
t eliminates the need to compute the gravity time derivative .
Referring to Figure 2, it can be seen that

a=—De} + L|—ey sing + ey cosy] . (18)

Taking the time-derivative of Eq. (18) yields

a=[wY+peY]xa—De¥ + L[—e¥sing +e¥cosy| , (19)
where .
*
w“’:e}”*é’l":%ﬂ. (20)

rel

Substituting Eqgs. (1), (2), (17), (19), and (20) into Eq. (16) yields the entry vehicle model

(a) ()
r=w" * (f — g(r)) +¢ e x (i — g(r)) —De¥ + L [—eY sing + eY cos ] — [—gﬂ r. (21)
The entry vehicle model in Eq. (21) is interesting from several points of view. First,
it is a rather straight-forward model derived from basic principles. It is amenable to com-
puter integration, possessing singularities only when r or v, are zero; both situations are
unimportant in our study. Secondly, this entry vehicle model provides direct access to the
acceleration states, which should lead to improved filtering and prediction as we process
the accelerometer measurements directly in the filter. Of course, the potential increase in
estimation performance comes at the price of three additional states. Thirdly, and more
importantly, the model provides direct insight into the various components of the vehicle
motion. For example, the first term (a) represents the curvature motion in-plane, and the
second-term (b) represents motion out-of-plane. The remaining terms can similarly be clas-
sified. Since we are ultimately concerned with guiding and controlling the entry vehicle
motion, it is desirable to be able to quantify the in-plane and out-of-plane motion in terms
of the state of the vehicle.



The dynamics in this case are simpler, but the measurement partials are significantly more
complex. Additionally, the measurement partials are now model-dependent (need to know
Cp, C1, and density model parameters). The question is, is it preferable to keep measure-
ment partials model-free so that the EKF update stage is not corrupted by uncertainty
in the model, but pay the price in more complex dynamics which will impact the EKF
propagation stage. This question needs further investigation, but for purposes of this pa-
per, we chose to utilize the more complex dynamics with the thought that proper “tuning”
of the EKF propagation phase can account more easily for the uncertainty in the model,
while keeping the EKF update stage structured so model uncertainty did not corrupt the
covariance correlations. This is necessary for more precise navigation and filter stability
when the first external measurement is processed by the EKF.

In the results that follow, the values of the lift coefficient, Cy,, and the drag coefficient,
Cp, are taken to be piece-wise constant with values taken directly from the simulation envi-
ronment. This is, of course, not possible in the real-world. One area of significant work that
remains is in determining an accurate and reliable model for the aerodynamic parameters
that can be used in the filter. This is an on-going effort. Also, the values of the bank
angle are assumed provided by an attitude determination subsystem. It may be beneficial
to consider integrating the attitude determination and the trajectory navigation.

RESULTS

Three main results are presented in this section. The first is a verification of the entry
dynamics model presented in the previous section. The second is a test of the robustness of
the IMU active filtering process against IMU failure. The third result is a test of the hier-
archical filter bank architecture in detecting the correct COSPAR atmospheric parameters

in the filter.

Dynamics Model Verification

The entry dynamics described in the previous section (see Eq. (21)) were tested to verify that
they can reproduce the truth trajectory under ideal conditions. The term “ideal conditions”
means that the true bank angle, atmospheric density, and aerodynamic coefficients are
known. A truth trajectory was generated utilizing two NASA simulations: the NASA
LRC POST simulation and the NASA JSC SORT simulation for a Mars 2005-class lander
(m = 438 kg) scenario from entry interface to parachute deployment (approximately 90 km
to 10 km altitude. The results show that the total error in position at parachute deploy to
be approximately two hundred and fifty meters, as shown in Fig. 3.

Considering the differences in the level of fidelity between the NASA simulations and
the dynamics model presented here, a few hundred meters difference in the trajectory at
parachute deploy is an excellent match. The differences in the trajectories are explained
by the different numerical integration algorithms and stemming from the use of different
gravity models (a simple Jy model is used in the filter dynamics model whereas the NASA
simulations utilize higher-order gravity models).

IMU Failure Robustness

One issue to consider is the robustness of the navigation system to gaps in the measure-
ments. Robustness implies that the navigation system should be able to perform well in
the presence of IMU measurement gaps. It is assumed here that IMU failure means that
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Define the state vector to be
r

x=1| v |,
a

where the components are the inertial position, r, velocity, v, and aerodynamic acceleration,
a. The state variable form of the dynamics can be represented as

5(1 = X3
X2 = g(x1)+x3 (22)
X3 = f(x,t)

where ) )
f(x,t) = (W” + ¢ ef) *x3 — De} + L [—ey sinp + €% cos ] .

With the relative velocity computed via
Vel :x2“ﬂ*x1 ’
where we assume that the planet is rotating at a constant rate, denoted by €2, we have

(xg — 2 xx1) * ([g(x1) + Xx3] — 82 * X2)
[|x2 — €2 % x1]|2

w o _

and Eqs. (1) and (2) expressed as functions of the state vector, x, take the form

XQ-—Q*Xl e“’*xl
i v 12 and ey =e} xey.

e = e —— -
D ke = Qx| 2 lle} *x1||’

In this paper, we assume that the atmospheric density profile in the filter can be modeled
via the exponential function

p(z1) x1 2m(z1 — Rar) 2m(z1 — Ryr)

— Ry
= —-C————+C Cssi 23
o0 exp T + C; cos( I ) + Cssin( 0 )W, (23)
where 71 := ||x1]|, Ry is Mars equitorial radius. The atmospheric model in Eq. (23) was

developed as a curve-fit to the COSPAR density model (derived from Viking lander data) [6].
Typical values for the model for a Mars 2005-class entry scenario in the lower region of the
atmosphere are pg = 3.492 x 1073 kg/m?, C; = 28.27, Cy = 1.5607, C3 = 0.3696, and
Hy = 300000. In the filter bank simulations presented in this paper, these constants are
varied around their nominal values to populate the filter bank.

The measurement model is given by

y =Tcrxs+ €, (24)

where T¢er = TITCI.(Q). Recall that, for time being, we are neglecting the scale factor
errors, misalignments, and biases, that is, in Eq. (11), we set b, =0, Y, =0 and E, = 0.
The measurement model in Eq. (24) is a relatively simple form for a measurement model
leading to measurement partials for the EKF that are not model dependent. This nice
result comes at the cost of taking the additional derivative of a. It might also possible to
consider the situation where we do not take the derivative of a in the dynamics, and utilize
the measurement model

y =Tcr[-Dey + L[—e} sing + €3 cos ¢]] + €, . (25)
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Figure 3: Position error magnitude for the entry dynamics models compared to the “truth”.

both the gyroscopes and the accelerometers cease to function properly at the same time.
The navigation system then has to rely on the last known acceleration and orientation of
the spacecraft. This can lead to significant estimation errors, especially if the vehicle is
maneuvering. The bank angle history for the scenario used in this paper is shown in Fig. 4.

In the following scenario, we assume that the IMU fails at £ = 225 seconds and, from then
on, all that is available is the last known values given by the IMU. The IMU failure occurs
just before a bank maneuver (refer to Fig. 4). Three cases are considered and the resulting
magnitudes of the position errors are shown in Fig. 5. First, the trajectory is propagated
using dead-reckoning (shown in red) leading to a significant increase in estimation error
after the IMU failure. This is an expected result. The dead-reckoning method of navigation
is not robust to IMU measurement gaps. In the numerical experiment shown here, the last
available IMU measurement is used in the propagation of the state until the data returns.
It is understood that there may be other procedures for dealing with IMU gaps in dead-
reckoning to reduce the sensitivity of the estimation process, but the fact remains that when
the IMU data is missing, there does not exist a backup dynamics model to counter the error
growth.

In the second numerical experiment (shown in black), the Kalman filter propagation is
used to extrapolate the state forward in the absence of IMU data. Although the filter cannot
account for the upcoming banking maneuvers, the flight model still allows for modeling of
the aerodynamic accelerations. The result is a significantly better fit with the true trajectory
for an extended period of time.

Finally, should the IMU data become available again, the dead-reckoning cannot effec-
tively react since there is no way to reduce the state errors existing at the time of data
reaquisition. On the other hand, with active Kalman filtering, the IMU data can be used
to recover the state. To illustrate this, suppose that the IMU data becomes available again
at ¢ = 250 seconds. The resulting estimation (shown in blue in Fig. 5) shows that the filter

11
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Figure 4: Bank angle history during the entry scenario used in the paper.

is able to recover the state estimate. The error and covariance plot for the acceleration
corresponding to this last case is shown on Fig. 6.

Robustness also implies that the navigation system should perform well without precise
knowledge of otherwise exactly known variables. The situation as it is now understood is
as follows: For dead-reckoning, the robustness to the lack of knowledge of environmental
parameters, such as atmospheric parameters, is high, since the process is not model de-
pendent. Aerodynamic accelerations are measured and used directly. Only gravity models
are needed, and these are relatively well-known. However, dead-reckoning is an open-loop
process, hence estimation errors will always continue to grow without bound since the IMU
measurements are corrupted and the initial vehicle state is not precisely known.

The issue of navigation robustness is an important issue that requires continued investi-
gation. The early results shown in Figs. 5 and 6 strongly indicate that active filtering of the
IMU data using a model-based algorithm (such as the Kalman filter) provides additional

protection against IMU data gaps.

Detecting Atmospheric Parameters

The long term goal of this research is to develop a multifilter bank regulated by a gating
network. Each filter would be a unique representation of a particular model of the spacecraft
and/or its environment. A clear target of the filter bank would be to accurately represent the
martian atmosphere. Different atmospheric density profiles, each representing a probable
description of the actual conditions on Mars, can be represented in each filter, and the
gating network then chooses in real time the filter the most likely to represent correctly the
current density.

To illustrate how the process might work, a filter bank is constructed using three filters
parameterized by the COSPAR parameters described in Eq. (23). One has an atmospheric
model which is a close fit to the true density profile in the SORT simulation of the martian

12



18000 T T T T T

14000 -

12000 Dead-reckoning

10000~

Active propagation
with the filter model

8000

Norm of position error [m]

6000 -
4000~

2000

Active tilterirEl

~

1 I
50 100 150 200

250 300 350
Time [s] IMU data reacquisition

Figure 5: Comparison of position error magnitude for dead-reckoning versus active filtering.

environment for the entire entry trajectory. The SORT simulation does not utilize the
COSPAR density model, but instead relies on a higher fidelity MarsGRAM density model.
In the remaining two filter realizations, the coefficients of the COSPAR model in the filter
are scaled by 10% during the period 250s to 300s for the second filter and by 10% during
the period 300s to 350s for the third filter. The gating network assigns to each filter an
activation weight as described in [2]-[3]. The activation weights are updated over time
through a process which at each time involves the current probability distribution of the
next measurement. The resulting activation weights are an indication of which filter is
performing the best at any time.

For the current case (we assume no IMU failure), the gains are plotted in Fig. 7. Initially,
the three filters are attributed the same gains. This is expected since all three filters have
the same COSPAR density coefficients. At the 250s mark, the activation weight of the
second filter begins to decline indicating that it’s COSPAR model representation does not
reflect the current environment. Since we control the simulation parameters, we know that
this is indeed the situation, hence the gating network is making the correct decision. At
the 300s mark, the activation weight of the third filter begins to decline indicating that
it’s COSPAR model representation does not reflect the current environment. Again, since
we control the simulation parameters, we know that this is indeed the situation, hence the
gating network is making the correct decision this time as well. In the end, the first filter
ends up being selected by the network as the most likely model.

CURRENT AND FUTURE DIRECTIONS

Many issues remain to be investigated. Most importantly, it is necessary to determine the
“best” approach to incorporating the “physics” associated with the entry dynamics into the
hierarchical filter bank. What parameters will be well-known and which are amenable to
selection via the gating network? The search for answers to this and other related questions
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Figure 6: The error and covariance plot for the acceleration for IMU recovery.

is underway. In the remainder of this section, we present one approach.
The lift and drag acceleration magnitudes are given by

p(r)y#2CLS and D p(r)2CpS

L famd
2m 2m

(26)
Let C} denote the “critical lift coefficient,” that is, the lift coefficient at maximum lift-

to-drag ratio. Let Cp, denote the “zero-lift drag coefficient,” that is, the drag coefficient
when the spacecraft is not generating lift. The drag coefficient is commonly modeled by the

parabolic function [7]
e’ 2
CL

where the term (Cpg /C’f)2 is the induced drag. At the condition of (Cr/Cp) ., We have
Cr, = C}. Then using Eq. (27) it follows that

Cp =Cp, , (27)

Cr
Cp, = ——5%—, (28)
° %A
2 (CD ) max
and re-arranging yields
CyL CL
CL =2Cp, (—) <—* . 29
Cb / max C’L ( )
For convenience, we denote the ratio between the lift coefficient and the critical lift coefficient
as
CL
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Figure 7: Activation weights for identifying the best-fit COSPAR model.

With A thus defined, the lift and drag magnitudes can be re-written as

- (&), Jes

D = [Bu(1+X)]g(7),

where g(r,7) is the dynamic pressure given by

. 1 . 1
q(r,7) = 5p(r) £ — €2 x r|? = 5/}(?‘)71381 ; (32)
and the ballistic coefficent is
B = s
™ Cp,S
The time-derivatives of L and D are given by
L 2vrel © Vrel ror ﬁm C’L
2 = — grm , ZL
L U12'el HOT X(’I") + /Bm + CL (33)
D Wrel OVpy, FOT Gm 222 [CL Cf
= - X tm o 4 | ZE
D oL R e e vl ooy I
where 5 R 5 R
X(r) = C1 + 2nCqysin [—Wg_—M)} — 27(C3 cos [L(T———M)]
Hy Hy
and

vrel:xii_n*x?»

The entry vehicle motion is fully described if we also know the “control” inputs ¢(t) and At)
and the parameters 8, and (CLL/Cp) .- The spacecraft is thus defined by two parameters,
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Brm and (Cr/Cp),,.x- This model requires knowledge of aerodynamic coefficients that are
not readily measured in-flight directly with the IMU accelerations. There may exist better
representations for the aerodynamics. The HME filter strategy could be designed such that
lift and drag model parameters are part of the decision space, along with density parameters.

Future work needs to focus on the physical modeling appropriate for the filter structure
described in the previous sections. In particular, we need to better understand how the
aerodynamics of a hypersonic capsule are represented, and how the inclusion of a sensor
for stagnation pressure could be utilize in the filter in conjunction with the aerodynamic
model.

Other areas of work on the horizon include studying the effects of IMU measurement
biases and misalignments on the navigation errors, integration of attitude estimation into
the filtering process, and consideration of stagnation pressure measurement.

CONCLUSIONS

The application of a hierarchical mixture of experts architecture to martian entry naviga-
tion during the highly dynamic hypersonic pre-parachute deploy phase was investigated. It
was proposed to utilize an approach that includes processing accelerometer and gyro data
in an extended Kalman filter as if they were external measurements. A dynamics model
suitable for use in an extended Kalman filter processing accelerometer measurements was
developed and demonstrated to be an accurate representation of the entry dynamics in
comparison with high-fidelity NASA simulations. At this stage in the investigations, the
preliminary filtering results indicate that the entry navigation problem may be tractable us-
ing IMU accelerometer observations as measurements in an HME architecture. Also, while
the pros and cons of using conventional dead-reckoning navigation over the use of a more
sophisticated recursive extended Kalman filter processing IMU measurements are not firmly
established, it is evident that in the event of intermittent IMU failure (that is, a failure to
provide measurements for an extended period), an extended Kalman filter-based navigation
algorithm is more robust and can, in fact, recover from the IMU data drop-out. Numerical
experiments aimed at testing the ability of the HME to detect atmospheric parameters also
provide positive indicators.
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